这个实验不需要提交线上实验报告所以只写了数据处理,图一乐
简易电桥测电阻
原始数据
供桥电压/{V} | 电流计内阻/ \Omega | N | {R_0} / \Omega | {R^{'}_0} / \Omega | {R_x} / \Omega | \Delta d/格 | \Delta R_0 = {\|}R_{01} - R_{02}{\|}/\Omega |
---|---|---|---|---|---|---|---|
4.0 | 2500 | 1.0 | 493.0 | 499.0 | 2 | 28 | |
4.0 | 100 | 1.0 | 501.0 | 495.0 | 2 | 6 | |
8.0 | 2500 | 1.0 | 500.0 | 494.0 | 2 | 14 | |
8.0 | 100 | 1.0 | 495.9 | 502.0 | 2 | 3.5 |
计算R_x
R_{x} = \sqrt{{R_0} * {R_0^{'}}}
R_{x1} = \sqrt{{R_0} * {R_0^{'}}} = \sqrt{493.0 * 499.0} = 496.0 \Omega
R_{x2} = \sqrt{{R_0} * {R_0^{'}}} = \sqrt{501.0 * 495.0} = 498.0 \Omega
R_{x3} = \sqrt{{R_0} * {R_0^{'}}} = \sqrt{500.0 * 494.0} = 497.0 \Omega
R_{x4} = \sqrt{{R_0} * {R_0^{'}}} = \sqrt{495.9 * 502.0} = 498.9 \Omega
待测电阻的不确定度
原理
- 电桥灵敏度
S = \frac{\Delta d}{|R_{01}-R_{02}|}R_0 \ (1)
- 电桥灵敏度带来的误差
\Delta R_0^{*} = R_0\frac{0.2}{S} \ (2)
- 电阻箱R_0的仪器误差为
\Delta_仪 = \Delta_{R_{0仪}} = 0.1\%R_0 + 0.005(K+1) \ (3)
- 联立(1)和(2)可得
\Delta R_0^* = R0 \frac{0.2}{\frac{\Delta d}{|R_{01}-R_{02}|}R_0} = \frac{0.2|R_{01}-R_{02}|}{\Delta d}
计算
- 电桥灵敏度误差
\Delta d = 0.2时
\begin{aligned} \\
&\Delta R_{0}^{*} = \frac{0.2|R_{01}-R_{02}|}{\Delta d} = |R_{01}-R_{02}| \ / \ 10 \\
&\Delta R_{0_1}^{*} = \frac{0.2|R_{01}-R_{02}|}{\Delta d} = |R_{01}-R_{02}| \ / \ 10 = 2.8 \\
&\Delta R_{0_2}^{*} = \frac{0.2|R_{01}-R_{02}|}{\Delta d} = |R_{01}-R_{02}| \ / \ 10 = 0.6 \\
&\Delta R_{0_3}^{*} = \frac{0.2|R_{01}-R_{02}|}{\Delta d} = |R_{01}-R_{02}| \ / \ 10 = 1.4 \\
&\Delta R_{0_4}^{*} = \frac{0.2|R_{01}-R_{02}|}{\Delta d} = |R_{01}-R_{02}| \ / \ 10 = 0.35 \\
\end{aligned}
- 电阻箱R_0的仪器误差
\begin{aligned} \Delta_{仪_1} = \Delta_{R_{0仪}} &= 0.1\%R_0 + 0.005(K+1) \\ &= 0.1\%*493.0+0.005*(4+1) \\ &= 0.518 \\ \Delta_{仪_1^{'}} = \Delta_{R_{0仪}} &= 0.1\%R_0^{'} + 0.005(K+1) \\ &= 0.1\%*499.0+0.005*(4+1) \\ &= 0.524 \\ \end{aligned}
\begin{aligned} \\ \Delta_{仪_2} = \Delta_{R_{0仪}} &= 0.1\%R_0 + 0.005(K+1) \\ &= 0.1\%*501.0+0.005*(4+1) \\ &= 0.526 \\ \Delta_{仪_2^{'}} = \Delta_{R_{0仪}} &= 0.1\%R_0^{'} + 0.005(K+1) \\ &= 0.1\%*495.0+0.005*(4+1) \\ &= 0.52 \\ \end{aligned}
\begin{aligned} \\ \Delta_{仪_3} = \Delta_{R_{0仪}} &= 0.1\%R_0 + 0.005(K+1) \\ &= 0.1\%*500.0+0.005*(4+1) \\ &= 0.525 \\ \Delta_{仪_3^{'}} = \Delta_{R_{0仪}} &= 0.1\%R_0^{'} + 0.005(K+1) \\ &= 0.1\%*494.0+0.005*(4+1) \\ &= 0.519 \\ \end{aligned}
\begin{aligned} \\ \Delta_{仪_4} = \Delta_{R_{0仪}} &= 0.1\%R_0 + 0.005(K+1) \\ &= 0.1\%*495.9+0.005*(4+1) \\ &= 0.5209 \\ \Delta_{仪_4^{'}} = \Delta_{R_{0仪}} &= 0.1\%R_0^{'} + 0.005(K+1) \\ &= 0.1\%*502.0+0.005*(4+1) \\ &= 0.527 \\ \end{aligned}
- 不确定度U_{R_0}
\begin{aligned} U_{R_0}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ U_{R_{01}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.518^2+2.8^2}\\ &=2.85\\ U_{R_{01}^{'}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.524^2+2.8^2}\\ &=2.85\\ \\ U_{R_{02}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.526^2+0.6^2}\\ &=0.80\\ U_{R_{02}^{'}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.52^2+0.6^2}\\ &=0.79\\ \\ U_{R_{03}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.525^2+1.4^2}\\ &=1.5\\ U_{R_{03}^{'}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.519^2+1.4^2}\\ &=1.49\\ \\ U_{R_{04}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.5209^2+0.35^2}\\ &=0.63\\ U_{R_{04}^{'}}&=\sqrt{(\Delta_{R_{0仪}})^2+(\Delta_{R_{0}^*})^2}\\ &=\sqrt{0.527^2+0.35^2}\\ &=0.63\\ \end{aligned}
- 不确定度U_{R_x}
\begin{aligned} U_{R_x} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x}\\ U_{R_{x1}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x1} = 2.02\\ U_{R_{x1}^{'}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x1} = 2.00\\ \\ U_{R_{x2}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x2} = 0.56\\ U_{R_{x2}^{'}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x2} = 0.56\\ \\ U_{R_{x3}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x3} = 1.05\\ U_{R_{x3}^{'}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x3} = 1.06\\ \\ U_{R_{x4}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x4} = 0.45\\ U_{R_{x4}^{'}} &\approx \frac{\sqrt{2}}{2}\frac{U_{R_0}}{R_0}R_{x4} = 0.44\\ \end{aligned}
最终取平均值
测量结果
供桥电压/{V} | 电流计内阻/ \Omega | N | {R_0} / \Omega | {R^{'}_0} / \Omega | {R_x} / \Omega | \Delta d/格 | \Delta R_0 = {\|}R_{01} - R_{02}{\|}/\Omega | 不确定度U_{R_x} |
---|---|---|---|---|---|---|---|---|
4.0 | 2500 | 1.0 | 493.0 | 499.0 | 496.0\plusmn2.01 | 2 | 28 | 2.01 |
4.0 | 100 | 1.0 | 501.0 | 495.0 | 498.0\plusmn0.56 | 2 | 6 | 0.56 |
8.0 | 2500 | 1.0 | 500.0 | 494.0 | 497.0\plusmn1.055 | 2 | 14 | 1.055 |
8.0 | 100 | 1.0 | 495.9 | 502.0 | 498.9\plusmn0.445 | 2 | 3.5 | 0.445 |
箱式电桥测电阻
原始数据
被测电阻 | N | R_0 / \Omega | R_x=NR_0/\Omega | \Delta d/格 | \Delta R_0 = {\|}R_{01} - R_{02}{\|}/\Omega |
---|---|---|---|---|---|
R_{x1} | 100 | 507.08 | 2 | 0.08 | |
R_{x2} | 1000 | 505.04 | 2 | 0.1 |
不确定度
箱式电桥灵敏度的误差
原理
\Delta R_x^* = NR_0\frac{0.2}{S}
S=\frac{\Delta d}{|R_{01}-R_{02}|}R_0
计算
\Delta R_x^* = NR_0\frac{0.2}{\frac{\Delta d}{|R_{01}-R_{02}|}R_0} = N\frac{0.2|R_{01}-R_{02}|}{\Delta d}
\begin{aligned} \Delta R_{x1}^* &= NR_0\frac{0.2}{\frac{\Delta d}{|R_{01}-R_{02}|}R_0} = N\frac{0.2|R_{01}-R_{02}|}{\Delta d} \\ &=100*0.1*0.08=0.8\\ \Delta R_{x2}^* &= NR_0\frac{0.2}{\frac{\Delta d}{|R_{01}-R_{02}|}R_0} = N\frac{0.2|R_{01}-R_{02}|}{\Delta d}\\ &=1000*0.1*0.1=1.0\\ \end{aligned}
极限误差
E_{lim1}=\plusmn(0.2\%NR_0+100) = 201.416
E_{lim2}=\plusmn(0.2\%NR_0+100) = 6050.4
总不确定度
U_{R_x}=\sqrt{E_{lim}^2+(\Delta R_x^*)^2}
U_{R_{x1}}=\sqrt{E_{lim}^2+(\Delta R_x^*)^2} = 201.42
U_{R_{x2}}=\sqrt{E_{lim}^2+(\Delta R_x^*)^2} = 6050.40
结果
被测电阻 | N | R_0 / \Omega | R_x=NR_0/\Omega | \Delta d/格 | \Delta R_0 = {\|}R_{01} - R_{02}{\|}/\Omega | 不确定度 |
---|---|---|---|---|---|---|
R_{x1} | 100 | 507.08 | 50708\plusmn201.42 | 2 | 0.08 | 201.42 |
R_{x2} | 1000 | 505.04 | 505040\plusmn6050.40 | 2 | 0.1 | 6050.40 |